Hanoi Open Mathematics Competition Team Contest - Junior Section Time limit: 60 minutes Sample Questions

Information:

- You are allowed 60 minutes to complete 10 questions. For Questions $1,2,3,4,5,6,7$, and 8 , only numerical answers are required. For Questions 9 and 10 , full solutions are required.
- Each one of Questions 1, 2, 3, and 4 is worth 5 points, and each one of Questions 5, 6, 7, and 8 is worth 10 points. No partial credits are given, and there are no penalties for incorrect answers. Each one of Questions 9 and 10 is worth 20 points, and partial credits may be awarded.
- Diagrams shown may not be drawn to scale.

Instructions:

- Write down your team's name in the space provided on the first page.
- Enter your answers in the space provided below the question.
- All together may discuss and complete the questions.
- The instruments such as protractors, calculators and electronic devices are not allowed to use.
- At the end of the contest you must put the question papers in the envelope provided.
- Write down your team's name in the space provided on every question sheet.

Team: \qquad Score: \qquad
For Juries Use Only

No.	Questions										Total	Sign by Jury
	1	2	3	4	5	6	7	8	9	10		
Score												

Question 1. The terms in the following sequence are all fractions:

$$
\frac{1}{2}, \frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{1}{6}, \frac{2}{7}, \frac{3}{8}, \frac{4}{9}, \frac{5}{2}, \frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \frac{5}{7}, \frac{6}{8}, \frac{7}{9}, \frac{1}{2}, \ldots
$$

Find the $9999^{\text {th }}$ term of the sequence.

Answer:

Question 2: Let ABC be a right triangle at A such that $A B=3, A C=4$. Let E, F be two points on the sides AB and AC , respectively such that $\angle A E F=\angle A C B$ and $\angle A F E=\angle A B C$. The perpendiculars drew from E, F to BC meet BC at points P and Q , respectively. Calculate $S=P E+E F+F Q$.

Answer:

\qquad

Question 3: Let x, y, z be real numbers such that

$$
\left\{\begin{array}{l}
x^{3}+y=x^{2}+2 \\
2 y^{3}+z=4 y^{2}+3 \\
3 z^{3}+x=9 z^{2}+1
\end{array}\right.
$$

Evaluate $P=x y z$.

Answer:

\qquad
Question 4: There are 2017 points inside a convex polygon of 2017 sides whose area is equal to 1. Assume that arbitrary three points of the 4034 given points are not collinear, and there exists a triangle with three vertices taken from 4034 given points whose area does not exceed x. Find x.

Answer:

\qquad
Question 5. Calculate the sum of all natural numbers n such that $(n+1)!-n+29$ is divisible by $n!+n+1$.

Answer:

Question 6. As shown in the figure, the square alongside has sides of length 4 units. The four identical circles fit tightly inside the square and the small circle that will fit in the central hole. What is the area of the shaded?

Answer:

\qquad
Question 7. Find the 3-digit number $\overline{a b c}$ such that $\overline{a b c}+\overline{b c a}+\overline{b a c}+\overline{c a b}+\overline{c b a}=3194$.

Answer:

\qquad
Question 8. Solve the equation

$$
\left(\frac{x}{x-1}\right)^{2}+\left(\frac{x}{x+1}\right)^{2}=90
$$

Answer:

Question 9. Let a, b, c be given distinct real numbers. Solve the equation :

$$
\frac{(b-c)\left(1+a^{2}\right)}{x+a^{2}}+\frac{(c-a)\left(1+b^{2}\right)}{x+b^{2}}+\frac{(a-b)\left(1+c^{2}\right)}{x+c^{2}}=0 .
$$

Solution:

Answer:

Question 10. Given $\triangle A B C(A B=c ; A C=b ; B C=a)$ with its incenter I. Prove that

$$
\frac{I A^{2}}{b c}+\frac{I B^{2}}{c a}+\frac{I C^{2}}{a b}=1 .
$$

Solution:

